skip to main content


Search for: All records

Creators/Authors contains: "Bower, Jennifer A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mineral weathering is an important soil-forming process driven by the interplay of water, organisms, solution chemistry, and mineralogy. The influence of hillslope-scale patterns of water flux on mineral weathering in soils is still not well understood, particularly in humid postglacial soils, which commonly harbor abundant weath- erable primary minerals. Previous work in these settings showed the importance of lateral hydrologic patterns to hillslope-scale pedogenesis. In this study, we hypothesized that there is a corresponding relationship between hydrologically driven pedogenesis and chemical weathering in podzols in the White Mountains of New Hamp- shire, USA. We tested this hypothesis by quantifying the depletion of plagioclase in the fine fraction (≤2 mm) of closely spaced, similar-age podzols along a gradient in topography and depth to bedrock that controls lateral water flow. Along this gradient, laterally developed podzols formed through frequent, episodic flushing by up- slope groundwater, and vertically developed podzols formed through characteristic vertical infiltration. We estimated the depletion of plagioclase-bound elements within the upper mineral horizons of podzols using mass transfer coefficients (τ) and quantified plagioclase losses directly through electron microscopy and microprobe analysis. Elemental depletion was significantly more pronounced in the upslope lateral eluvial (E horizon- dominant) podzols relative to lateral illuvial (B horizon-dominant) and vertical (containing both E and B hori- zons) podzols downslope, with median Na losses of ~74 %, ~56 %, and ~40 %, respectively. When comparing genetic E horizons, Na and Al were significantly more depleted in laterally developed podzols relative to vertically developed podzols. Microprobe analysis revealed that ~74 % of the plagioclase was weathered from the mineral pool of lateral eluvial podzols, compared to ~39 % and ~23 % for lateral illuvial podzols and vertically developed podzols, respectively. Despite this intense weathering, plagioclase remains the second most abundant mineral in soil thin sections. These findings confirm that the concept of soil development as occurring vertically does not accurately characterize soils in topographically complex regions. Our work improves the current understanding of pedogenesis by identifying distinct, short-scale gradients in mineral weathering shaped by local patterns of hydrology and topography. 
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  2. Chemical analyses were performed on sieved and dried soil samples collected for the Lateral Weathering project within Watershed 3, Hubbard Brook Experimental Forest, Woodstock, NH, USA from 2018-2020. Chemical information corresponds to horizons described in dataset HBR361, which were collected from pits described in the same dataset. Analyses include pH, C, N, exchangeable ions, secondary metals from citrate dithionite and ammonium oxalate in the dark, and total elemental content. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  3. Soil pits and horizons were described and sampled as part of the Lateral Weathering project within Watershed 3, Hubbard Brook Experimental Forest, Woodstock, NH, USA from 2018-2020. Soil pits were dug and described using NRCS methods. When possible, physical samples were archived in the Hubbard Brook Sample Archive. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  4. Soil pits and horizons were described and sampled as part of the Lateral Weathering project within Watershed 3, Hubbard Brook Experimental Forest, Woodstock, NH, USA from 2018-2020. Soil pits were dug and described using NRCS methods. When possible, physical samples were archived in the Hubbard Brook Sample Archive. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less